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This final report includes (1) results reported in the interim report submitted in September,
2004, and (2) results from the final three months of research conducted from October through
December, 2004. All of the research reported for the October-December, 2004 period relates to the
formation of magnetite-polylactide complexes and their assembly into magnetic microspheres.

Summary
Our research on the development and characterization of magnetic nanoparticle-polymer

complexes for the project period 6/1/03-12/31/04 has yielded approximately 10-nm diameter
cobalt particles coated with graphitic or silica protective shells to prevent oxidation of the particle
surfaces. The specific saturation magnetizations of the protected particles range from 50-112 emu g
1, which is up to about five times the response of our previous nanoparticle materials. Oxidative
durability results demonstrate that both classes of systems yield oxidatively-stable cobalt
nanoparticles in air or water. However, the graphitic coatings are significantly more mechanically
robust relative to the silica coatings. By contrast, the silica coatings can be readily functionalized
with desirable functional groups. Collaborations with Prof. St. Pierre's biophysics group in Australia
have been valuable to understand the material and magnetic properties of these new materials.

Accomplishments during this project also include a method for preparing magnetite
microspheres with the biodegradable polymer, poly(L-lactide), strongly adsorbed onto the particle
surfaces. The magnetite nanoparticles for this research are 4.8 nm in radius (by dynamic light
scattering), and are superparamagnetic. Efforts with the magnetite-polymer complexes have been
coordinated with Drs. Rosengart (U. Chi.) and Kaminski/Mertz (Argonne), and will continue as we
jointly learn how to tailor surfaces to avoid immune response and to complex with biospecific
groups. We have focused on binding different amounts of poly(L-lactide) copolymers to the

magnetite nanoparticle surfaces and subsequent
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Figure 1. Stability in the magnetic properties have been prepared in our laboratories in
of cobalt-silica nanoparticle complexes several key microphase-separated block
demonstrates the oxidative durability of these copolymer solutions [1-9]. We have discovered
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nanoparticles. The ceramic coatings have chemical compositions similar to silica in one case [6, 8],
and a graphitic coating in the other [9]. Durability measurements of the specific saturation
magnetizations of the cobalt nanoparticles demonstrate that these materials are protected from
oxidation by the ceramic shells (figures 1 and 2). The magnetic responses of these materials increase
substantially after the heat treatment in terms of the mass specific magnetization of the cobalt, and
the Australian collaborators are working to understand this phenomenon. Results show that the
crystallinity of the cobalt nanoparticles increases Cobalt nanoparticles encapsulated with pyrolyzed phthalonitrile

during the heat treatments, and the large increases copolymers are oxidatively stable whereas particles coated with

in magnetization are attributed to that feature. phthalonitrile or cyanate ester networks lack oxidative resistance.
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Figure 2. Cobalt nanoparticles encapsulated

"Re-functionalization" of the protected with pyrolyzed phthalonitrile copolymers are

particles to achieve dispersibility in biological oxidatively stable whereas particles coated with

media, to provide a means for attaching phthalonitrile or cyanate ester networks lack

biospecific groups, and to enable oxidative resistance.

microsphere formation encapsulating
therapeutic agents.

After the cobalt particles are formed within the block copolymer templates in solution, these
cobalt nanoparticles are heat-treated to produce conformal, protective ceramic shells. A portion of
the organic polymer surrounding the particle thermally degrades as the shell forms. Thus, one focus
has been to learn how to "re-functionalize" the particle surfaces, so that they can be dispersed in
biological fluids, formed into microspheres, and functionalized with biospecific groups. Results
demonstrate that the silica-coated cobalt can be re-functionalized with several desired functional
groups [8], but we have found Comparisons of Charged Aminopropylsilane

it extremely difficult to Concentrations with Surface Concentrations Obtained
Surface
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amine on the particle surfaces Figure 3. Results demonstrate that the concentration of amines
are controllable and agree on silica-protected cobalt nanoparticles can be controlled
reasonably well with the according to charged concentrations of coupling reagents.
charged concentrations (figure



3). We have established a method for quantifying the amine groups by derivatizing them with
trifluoroacetic anhydride, hydrolyzing excess anhydride, then back-titrating the resultant acids. The
surface-tethered amines can initiate L-lactide and the biodegradable polymer, poly(L-lactide), can be
polymerized directly from the protected cobalt surfaces (figure 4). It is important that the
concentration of surface amines be controlled because the average molecular weights of the poly(L-
lactide) tails should be related to the amine initiator concentration (i.e., average MW equals (grams of
L-lactide monomer)/(moles of amine)).

Surface Re-Functionalization of Oxidatively-Stable Cobalt Efforts are underway to optimize the
Nanoparticles followed by Growth of Biodegradable Polymer concentration of amine, and the molecular
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can be "re-functionalized" with amines, then the including isocyanates and with poly(ethylene

amine groups can initiate poly(L-lactide) oxide) and polydimethylsiloxane oligomers [8].

oligomers directly from the particle surfaces.

Magnetite-poly(L-lactide) microspheres.
We have discovered a general method for preparing complexes of magnetite with key triblock

copolymers. The central blocks of the copolymers are functionalized with multiple carboxylic acid
groups to bind with the magnetite surfaces [10-13]. The two end blocks of the copolymers remain
free from the magnetite surfaces (i.e., they are not complexed with the magnetite). A family of
triblock polymers with poly(L-lactide) end blocks and a central polysiloxane block containing
carboxylic acid binding groups was developed. Both chemical block structures are based on
biocompatible polymers since their intended applications are in-vivo.

The synthesis of the poly(lactide-siloxane-lactide) triblock copolymers comprises three reactions.
First, difunctional, controlled molecular weight polymethylvinylsiloxane oligomers with
aminopropyldimethylsilyl endgroups were prepared in base catalyzed, ring-opening redistribution
reactions. Second, these oligomers were utilized as macroinitiators for ring-opening L-lactide to
provide triblock materials with polymethylvinylsioxane central blocks and poly(L-lactide) end blocks.
The molecular weights of the poly(L-lactide) end blocks were controlled by the grams of L-lactide
relative to the moles of macroinitiator. Third, the vinyl groups on the polysiloxane center were
functionalized with carboxylic acid groups by adding mercaptoacetic acid across the pendent double
bonds in ene-thiol free radical reactions. 2Si NMR spectroscopy was utilized to quantify the
functional binding groups for the magnetite on the central anchor block (figure 5).

The triblock copolymers were complexed with magnetite nanoparticles that had been freshly
prepared by co-precipitation of stoichiometric concentrations of FeC12 and FeC13 in aqueous
hydroxide base. It was important that the pH be maintained at -6 during complexation due to the
extreme lability of the degradable polylactide esters in base. The magnetite nanoparticles had
average radii of 4.8 nm measured by dynamic light scattering in water. The average surface area of
the magnetite nanoparticles was measured by nitrogen absorption analysis (BET) to be 95 m2 g-'. A



representative procedure for preparing the magnetite nanoparticles and for complexing them with a
polylactide copolymer is given below.
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Figure 5. Quantitative Si NMR of an acid-functionalized separately under N2 and
PLLA-P(COOH)-PLLA triblock copolymer having block syringed into a three-neck,
molecular weights of 5000-2600-5000 g mol 1 where 2600 250-mL, round-bottom
refers to the molecular weight before the addition of 24 acid flask equipped with a
groups. mechanical stirrer and a

pH electrode connected to

a pH meter. The pH was adjusted to -9.5 by adding 10 mL of the NH 4OH solution while stirring.
The solution immediately turned black indicating the formation of magnetite particles. The reaction
mixture was stirred under N2 for 60 min. The reaction was neutralized to pH -6.0-7.0 using a 4M
HC1 solution and allowed to continue stirring under N2 for an additional 30 min. The appropriate
amount of copolymer dissolved in 90% CH 2C12/10% MeOH v/v (25 mL) was injected into the

reaction flask. The N 2 purge was removed and the reaction mixture was stirred for 18 h.
The reaction mixture was transferred to a one-neck, 250-mL, round-bottom flask. The reaction

flask was washed with 90% CH 2CI2/10% MeOH v/v to ensure the complete transfer of the product.
The CH 2Cl 2/MeOH solution was removed under vacuum and the remaining product was collected
by holding a magnet to the bottom of the flask and decanting the water. The magnetite complex
was washed with Millipore water three times to remove any salts. The complex was dried at room
temperature, then redispersed in CH 2Cl 2/MeOH solution (100 mL) and centrifuged to collect the
nanoparticles. The nanoparticles were dried under vacuum and stored in a sealed 250-mL, one-neck,
round-bottom flask.

The magnetite nanoparticles were coated with the acid-functionalized poly(L-lactide-b-siloxane-

b-L-lactide) triblock copolymers. In the formation of the magnetite-copolymer complex, the pH
was adjusted to pH -6 with dilute HC1. In this pH range, the magnetite surface was slightly cationic
(magnetite isoelectric point = pH 6.8) and the acid groups were partially ionized. Hence, this pH
was utilized to promote adsorption of the carboxylate groups onto the magnetite surface. Once this
was accomplished, the magnetite-copolymer complex was dispersible in chloroform or
dichloromethane but not water. To confirm that the magnetite nanoparticles were coated with the
copolymer stabilizer, the surface properties of the magnetite were analyzed using X-ray
photoelectron spectroscopy. XPS analysis was also performed on magnetite coated with a 5,000-



2,600-5,000 g mot' triblock copolymer functionalized with an average of 24 acid groups per chain.
Two complexes were prepared by charging 66 and 50 wt % magnetite.

XPS results confirmed that the nanoparticle surfaces were coated with the copolymer. The high
iron (27 %) and oxygen (46%) on the surface of the bare magnetite particles suggested that they
were relatively clean. Once the magnetite nanoparticles were coated with the copolymer, these
surface compositions changed significantly. The iron content decreased from 27% to 2% suggesting
that the particles were, indeed, coated with the triblock dispersion stabilizer. The presence of Si and
S in the coated magnetite further confirmed the presence of the stabilizer on the surface.
Thermogravimetric analysis (TGA) was utilized as a means for determining the efficiency of
copolymer adsorption onto the magnetite nanoparticles. The nanoparticles were fractionated by
centrifugation, then TGA and magnetic susceptometry were measured to probe the compositional
distribution of polymer on the nanoparticles. Results suggested that although the nanoparticle
surfaces were indeed coated, the amount of polymer on some of the particles was much higher than
on others. These aspects will require further investigations to narrow the compositions over all of
the particles.

Microspheres with diameters of -2 microns and smaller were formed from these complexes in
rapidly agitated dichloromethane-in-water suspensions. Poly(vinyl alcohol) was employed as the
suspension stabilizer for the microsphere-dichloromethane droplets. The complexes readily disperse
in solvents for the tail poly(L-lactide) blocks (e.g., dichloromethane), and this enables the formation
of microspheres. It is encouraging that the size range of these microspheres is within that required
for their introduction into the arterial system. However, the distribution of microsphere sizes
remains relatively broad. Continuing work in this area will focus on (a) improving the homogeneity
of the starting complexes, (b) understanding how the block lengths of the dispersion stabilizers
translate into microspheres with homogeneous composition distributions, and (c) optimizing
(increasing) the concentration of magnetite.

Work on these microsphere materials will be further coordinated in the upcoming year with Drs.
Rosengart (Univ. Chicago) and Kaminski/Mertz (Argonne labs) for evaluation in both toxicity
measurements and in forming hydrophilic, biotinylated surfaces.
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